

Hands-on strategy & competitive solutions

## Space-Based Solar Power

A reliable solution to help decarbonize Europe?

2023

## Technological innovation, public-private partnerships and commercial viability allow the development of Space-Based Solar Power (SBSP)



## The Case for SBSP

- SBSP provides a reliable, renewable and limitless energy supply, unaffected by weather or daylight limitations.
- SBSP could be a solution to climate change and European needs for sustainable energy, and exploring its feasibility is crucial for a sustainable future.



advancements

Latest innovation in

solar cell technology,

materials, robotics

and on-orbit

assembly and

maintenance

## Key industry trends

Technological



Public-Private partnerships

Governments, space agencies, and private companies are building partnerships and consortiums to invest in SBSP R&D



Commercial viability

With decreasing costs of solar energy, SBSP is becoming more and more commercially viable



## Major SBSP technical challenges are concentrated in the Space Solar Power Plant





# Sources: [1] OHB TN 01 Cost vs. benefits studies, <u>ESA - Cost vs. benefits studies</u> [2] ESA Statement of Work, Pre-Phase A System Study of a Commercial-Scale Space-Based Solar Power (SBSP) System for Terrestrial Needs [3] Shubham Gosavi, A Review on Space Based Solar Power, 2021, <u>(PDF) A Review on Space Based Solar Power</u> (researchgate.net)

## 5 main projects falling into 4 categories have been disclosed so far

| Category                                                       | Electrical power over<br>articulated joint(s)                                                                              | Optical power over articulated joint(s)                                                  | Fixed structure                         | Solar refractors (no energy conversion)  |                                                                                             |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|
| Project                                                        | Mr SPS                                                                                                                     | SPS Alpha                                                                                | CASSIOPeiA                              | Project Solspace                         | Mirasolar (18 satellites constellation)                                                     |
| Concept                                                        | WPT pointing a fix point on Earth                                                                                          | WPT pointing a fix point on Earth                                                        | Fixed sun-pointing mirrors              | Mirrors steered using rotating flywheels | 3 axis Stabilized Main frame with 2 axis tracking individual mirror targeting earth station |
| Energy transmission<br>to Wireless power<br>transmission (WPT) | Electrical transmission                                                                                                    | Optical transmission                                                                     | Optical transmission                    | No WPT                                   | No WPT                                                                                      |
| Reflectors                                                     | No reflectors                                                                                                              | Individually heliostats mirrors                                                          | Fixed mirrors                           | Mirrors steered using rotating flywheels | 2-axis Individually earth tracking mirrors                                                  |
| Solar Panels                                                   | Concentrator photovoltaics (CPV)<br>Thin-film GaAs                                                                         | CPV multi-bandgap architecture with<br>integrated thermal management                     | CPV Fresnel-Kohler concentrator         | No PV                                    | No PV                                                                                       |
| WPT                                                            | Retro-directive planar Radio frequency (RF) phase-array                                                                    | Retro-directive planar RF phase-array                                                    | Retro-directive helical RF phased array | No WPT                                   | No WPT                                                                                      |
| Power delivered <sup>1</sup>                                   | 1 GW for 11 800 m of wingspan                                                                                              | 2 GW                                                                                     | 2 GW for 1700 m of wingspan             | 144 MW per Satellite                     | 5,5 GW for 10 km of diameter                                                                |
| Cost estimated <sup>2</sup>                                    | \$30B for 1 GW                                                                                                             | \$31B for 2GW                                                                            | \$35B for 1GW                           | -                                        | \$11B <sup>3</sup>                                                                          |
| Trade-off                                                      | Concentration and long distribution<br>power path requiring special<br>consideration of losses and thermal<br>dissipation. | Concentration of power requiring special consideration of losses and thermal dissipation | Reliability                             | Work with current solar panel fields     | Work with current solar panel fields                                                        |

Sources:



 [1] Xinbin, H. Space Solar Power development in China and MR-SPS, 2015 端端環:24 · 1 (sspss.jp)

 [2] Xinbin, H. Multi-Rotary Joints SPS.2015. <u>Multi-Rotary Joints SPS (ohio.edu)</u>

 [3] John C. Mankins, SPS-ALPHA: The First Practical Solar Power Satellite via arbitrarily large phased array (nasa.gov)

 [4] Ian Cash, CASSIOPeiA – A new paradigm for space solar power, 2019. <u>CASSIOPeiA – A new paradigm for space solar power (spaceenergyinitiative.org.uk)</u>

 [5] Ian Cash, IECL CASSIOPeiA Solar Power Satellite Presentation ISDC 2018 – YouTube

 [6] Professor Colin McInnes, ENHANCING SOLAR POWER GENERATION FROM SPACE, <u>University of Glasgow - Explore - Sustainability at Glasgow - Research - Enhancing solar power generation from space Society [https://space.nss.org/wp-content/uploads/Mirrors-in-Space-for-Electric-Power-at-Night-2012.pdf

</u>

## The main SBSP projects choose SSO, GSO and GEO orbits

|             | Polar orbit and Sun-synchronous orbit (SSO)                                |           | Geosynchronous orbit (GSO)                                                           |                         | Geostationary orbit (GEO)                                                            |
|-------------|----------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|
|             |                                                                            |           | Geosynchronous Orbit<br>Control<br>Centro                                            |                         | Geostationary Orbit<br>35,786 km                                                     |
| Project     | Project Solspace                                                           | Mirasolar | SPS Alpha <sup>1</sup>                                                               | CASSIOPeiA <sup>2</sup> | Mr SPS                                                                               |
| Altitude    | 200 -1000 km                                                               |           | 35 786 km                                                                            |                         | 35 786 km                                                                            |
| Interest    | SSO is above a point on the Earth constantly at the same time of the day   |           | Constantly stay above the same region on Earth                                       |                         | Constantly stay above the same point on Earth                                        |
| Utilization | <ul><li>Imaging satellites</li><li>Weather monitoring satellites</li></ul> |           | <ul><li>Telecommunication satellites</li><li>Weather monitoring satellites</li></ul> |                         | <ul><li>Telecommunication satellites</li><li>Weather monitoring satellites</li></ul> |



IAC PARTNERS 1 - SPS-ALPHA might also be based in alternative Earth orbits, or elsewhere, such as at Earth-Moon Libration points, lunar orbit, Sun-Earth Libration points, Mars orbit 2 - CASSIOPeiA could be also used for GEO, Medium earth orbits (MEO) with 4 satellites, Elipitcal sun-synchronous orbits with 5 satellites, Low earth orbits (LEO)

#### Sources:

[1] Types of orbits, The European space agency, ESA - Types of orbits [2] Clarity of Concept. (2021, 2 juillet). Geostationary vs Geosynchronous vs Polar Orbits : UPSC [Vidéo]. YouTube. https://www.youtube.com/watch?v=H-gaSnxP60A

## What's next? Solaris ESA preparatory program for launching a commercial-scale SBSP in 2040

- ESA has launched SOLARIS, a preparatory initiative for future decision making on European SBSP.
- SOLARIS aims to establish the viability of Space-Based Solar Power for clean energy needs on Earth, potentially leading to a full development program decision in 2025.
- The initiative has set targets for launching a sub-scale demonstrator by 2030, a pilot SBSP by 2035, and commercial-scale SBSP by 2040.





## From a promising concept to a European commercial-scale SBSP in 2040



### Why is SBSP a promising concept?

SBSP can help Europe sustaining the growth of non-dispatchable renewable energies by providing reliable, renewable and limitless energy supply



### **Key trends**

Technological innovation, public-private partnerships and commercial viability allow the development of SBSP concept.



## **Next challenges**

- Key SBSP technologies (wireless power transmission system, on-orbit assembly and maintenance) are still in their early stages of development for size scale required by SBSP
- Their maturity process will affect the performance and therefore the cost competitiveness of SBSPs and create uncertainty around the commercial viability of SBSP.



### How will Europe handle these challenges?

ESA recently launched Solaris program that will help Europe to go from 0 to 1 and build their own commercial SBSP by 2050.



# NNOVATE. ACCELERATE. CHALLENGE.



**Paris - Lyon - Toulouse - Chicago - Singapore**