

INNOVATE · ACCELERATE · CHALLENGE

Hydrogen - The next Wave of Energy Disruption Strategic Outlook

Agenda

Trends & Driver Hydrogen Use Cases Technology Roadmap 2020-2050 Roadblocks moving forward Strategic Roadmap & Patterns for Success IAC Service Offering

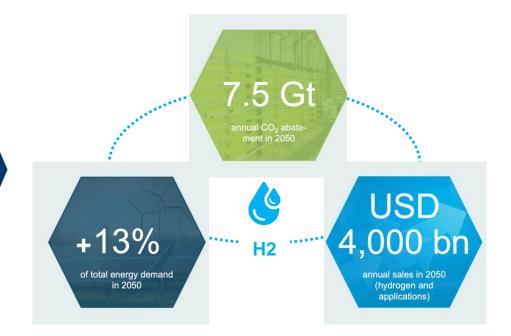
Trends & Driver building H2 Momentum

Regulatory environment, customer sentiment and technology maturity are expected to boost hydrogen in pole position of the ongoing energy transition race

Trends & Driver for H2 Momentum

Impact on H2 Consumption & Energy Mix

- Regulatory Environment
- C


Customer Sentiment

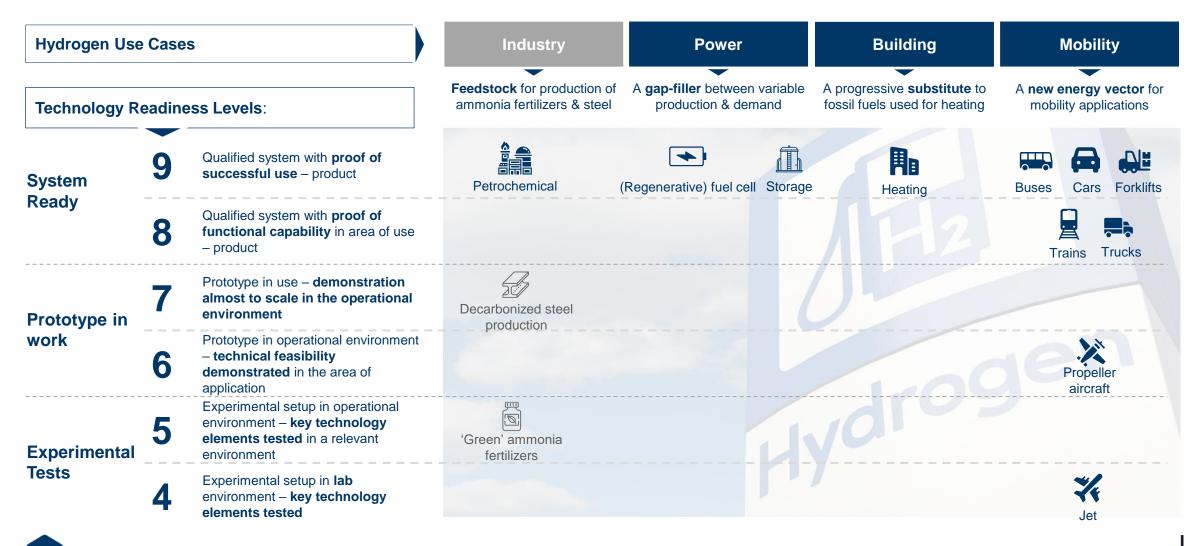
Sentim

Technology Maturity

- 66 countries announced zero-emission goals as national target for 2050
- Global push for government and industry alliances (Hydrogen Council members 2017: 13, 2020: 60)
- Sustainability as leading consumer motive moved from rank 7 to 3 in rankings globally
- Strong push expected by COVID and generation switch (Generation X and Y)
- Commercialization of H2 end-user use cases
- 80% decrease of global renewable energy prices (since 2010)
- 55x growth in electrolysis capacity (2015-2025)

PARTNERS Source: Based on meta market research and IAC industry insights

Hydrogen Use Cases

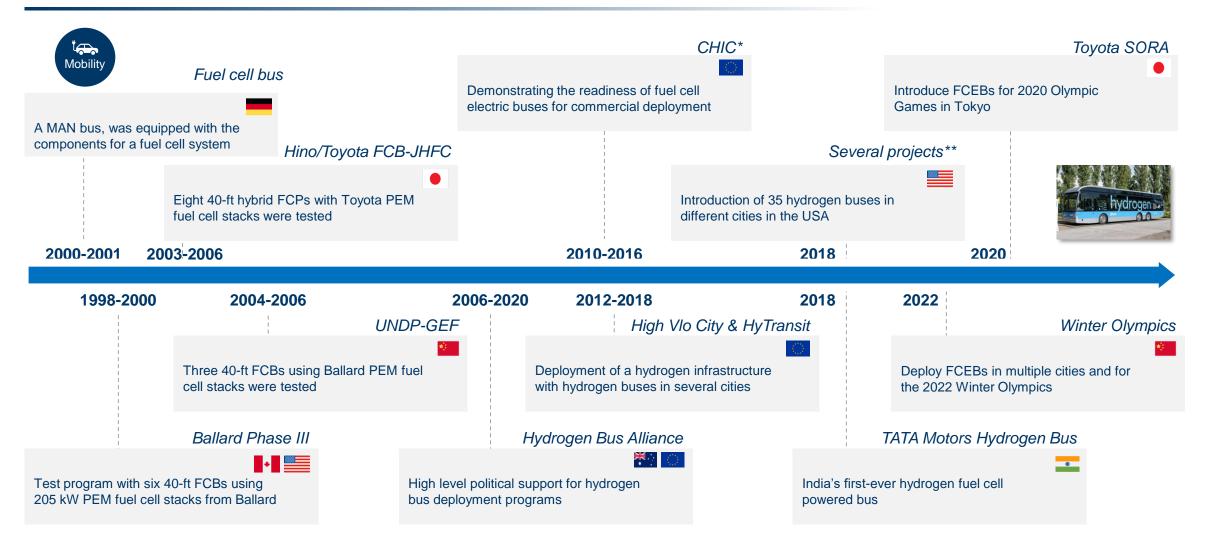

The rise of hydrogen can kill over 60% of global CO2 emission – 4 industries will be impacted most, with first use cases reaching market readiness

		Use Cases	H2 Substitution Applications	Hydrogen Use Case Examples
	5%	Others		Hydrogen Heating System
Not substitutable by H2	27%	Agriculture, forestry & other land use		
Partially substitutable by H2 Fuel for heat and power Feedstock for industry 	6%	Building	Heating networks with H2	Ammonia Refinery
	14%	Industry	 Clean feedstock for oil refining & chemicals Circular economy with CCS** 	
	17%	Mobility	Fuel cell electric vehiclesSynthetic fuels	Hydrogen Fuel Station
	31%	Power*	Integration of renewables	H2 from Renewable Energies

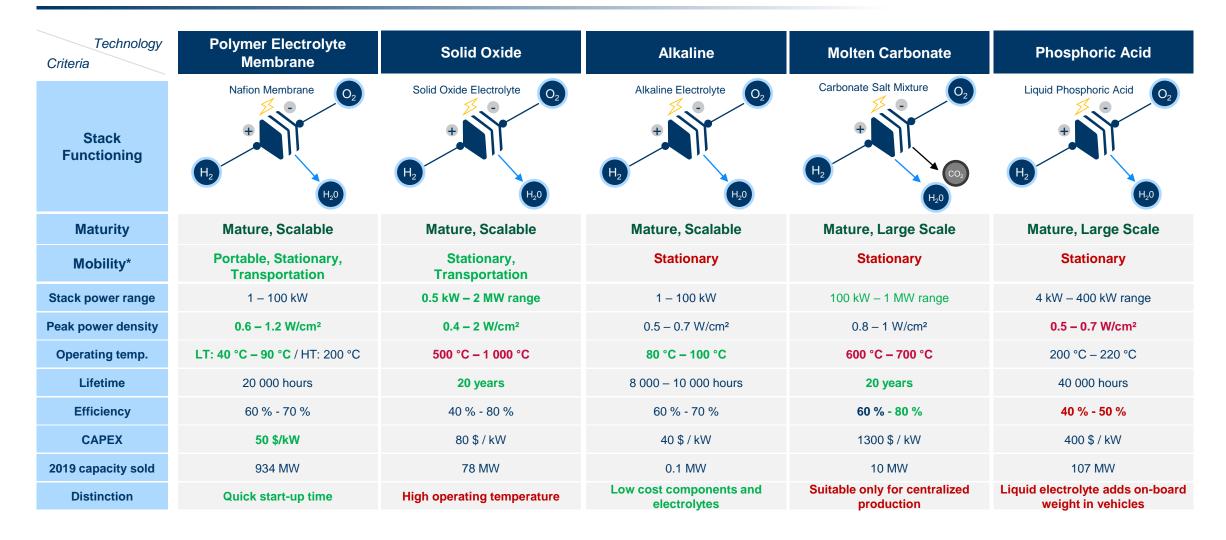
ARTNERS

Technology Roadmap Snapshot 2020 shows diverse maturity across use cases - ...

Technology Roadmap 2020 (Deep Dive)


Especially H2 powered vehicles start to scale-up on a global level with solid business potential – commercial aviation and ships lagging behind

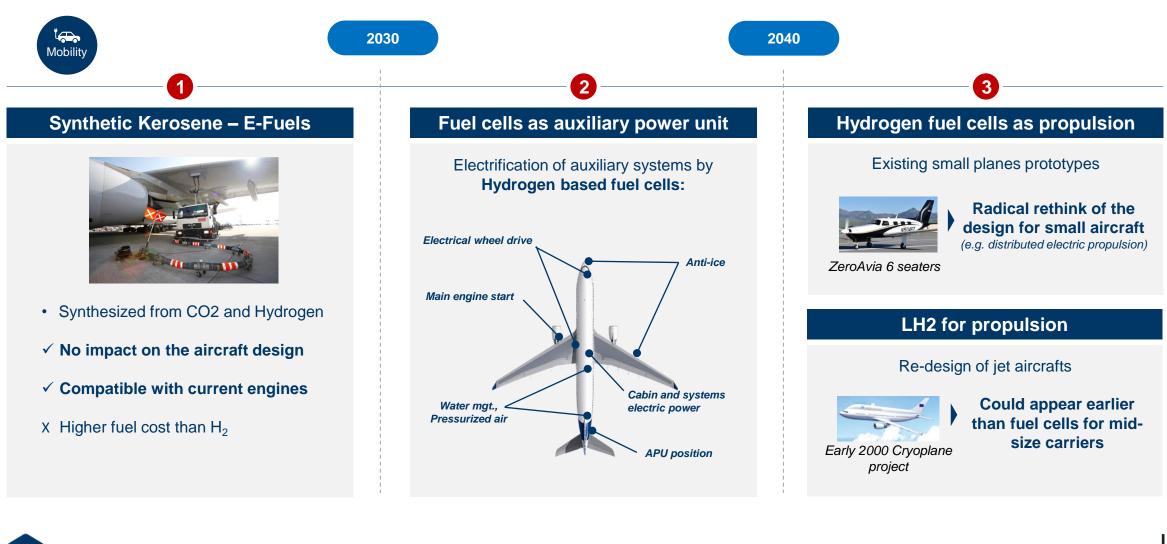
Ť.	Forklifts	Cars	Buses I Trucks	Trams & Railways	Aviation	Ships
Mobility	Ģ.	ra transmissione		æ	Ŧ	
Market Readiness		•				\bigcirc
Commercial Solutions	Toyota Linde – FC 35	Renault - KangooZE	Solaris - Urbino 12 Fyundai - XCIENT	ALSTOM - iLint	n/a	n/a
Final Stage of Development	Mature technology – key players already commercialized Forklifts (new Players can penetrate the market)	Toyota - Mirai Coordination Coordination BMW – i Hydrogen Next X5	Daimler – Citaro FC	Siemens – Mireo Stadler – H2 Flirt	ZeroAvia Apus - i-2	n/a
Business2020Potential2030	31.000 350.000	15.000 8.000.000	4.000 100.000	100 1.100	UAV Biz Jets/ Small Aircrafts	Demonstration Prototype


Technology Roadmap 2020 (Deep Dive Buses & Trucks)

With 20 years of history, hydrogen-enabled buses are already the "new normal" in urban mobility globally

Technology Roadmap 2020 (Deep Dive)

Still, the technology architecture is still diverse across applications and use cases with no stable conversion towards global technology standards



*Mobility:

ERS Portable: Designed to be moved around, including APUs (0.5-20kW) Stationary: Provide electricity and not designed to be moved (0.2kW-2MW) Transportation: Provide propulsion or range extension to a vehicle (1-300kW)

Sources: DoE Fuel Cells Factsheet, NED Stack, E4Tech, Fuel Cells Today, Fuel Cells History and Principles, Research Gate publications on Direct Methanol Fuel Cells, DNVGL Report, Design News – Hydrails are the future of Rail Transportation, 2016 Fuel Cells Technologies Multi Year Research and Development For commercial aviation, we see 3 evolutionary steps to reduce CO_2 emission via H_2 close to zero-carbon emission solutions not expected to rise before 2040

C PARTNERS

Still, the potential of hydrogen is significant through all applications and unleashes big opportunities across all hydrogen relevant use cases

5

The devil is in the details: We see 4 significant roadblocks for large-scale commercialization of full hydrogen-enabled use cases

Roadblocks towards large-scale H2 use cases

F

Technology Breakthrough

• **Diverse maturity** levels for H2 use cases with fragmented commercialization roadmaps

- Still ongoing technology competition in key use cases (regarding business potential and end user relevance) like mobility (eCars vs H2 cars)
- Transition phase from todays solutions to target solutions will take up to 20 years

 Widespread and sustainable (green) H2 solutions will require
 +35% electricity production than today

Value Chain Complexity &

Infrastructure needs

- To guarantee full-scale distribution, storage and delivery will lead to massive updates of current infrastructure (transition phase for the 40.000 airports globally of > 30 years expected)
- Although strong momentum on national level for H2, global standardization efforts only at the beginning – in strong competition with further "next generation" technologies

Regulatory

Uncertainty

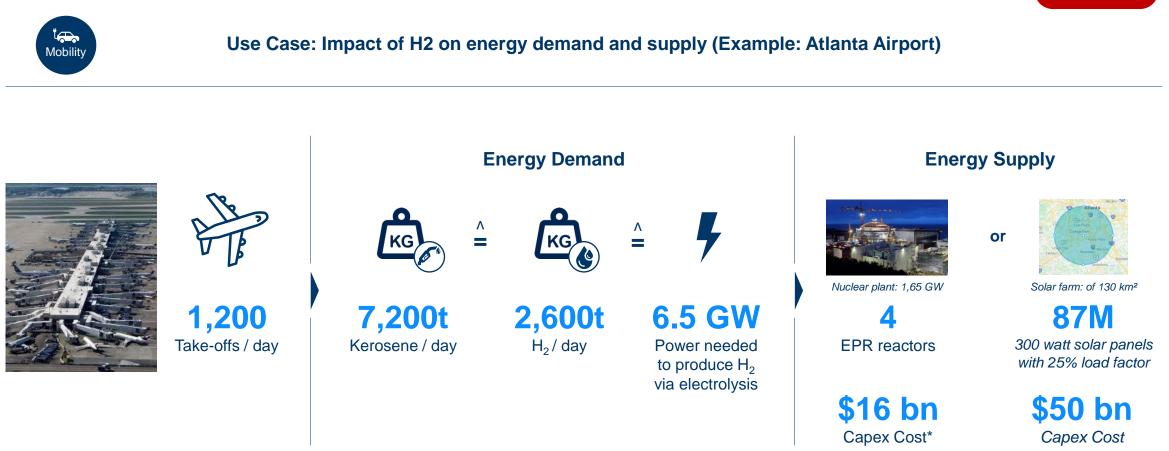
 Impact of COVID not clear yet – but expected to slow-down "appetite for investments" esp. in China and the US until 2022 End **User** Acceptance

(

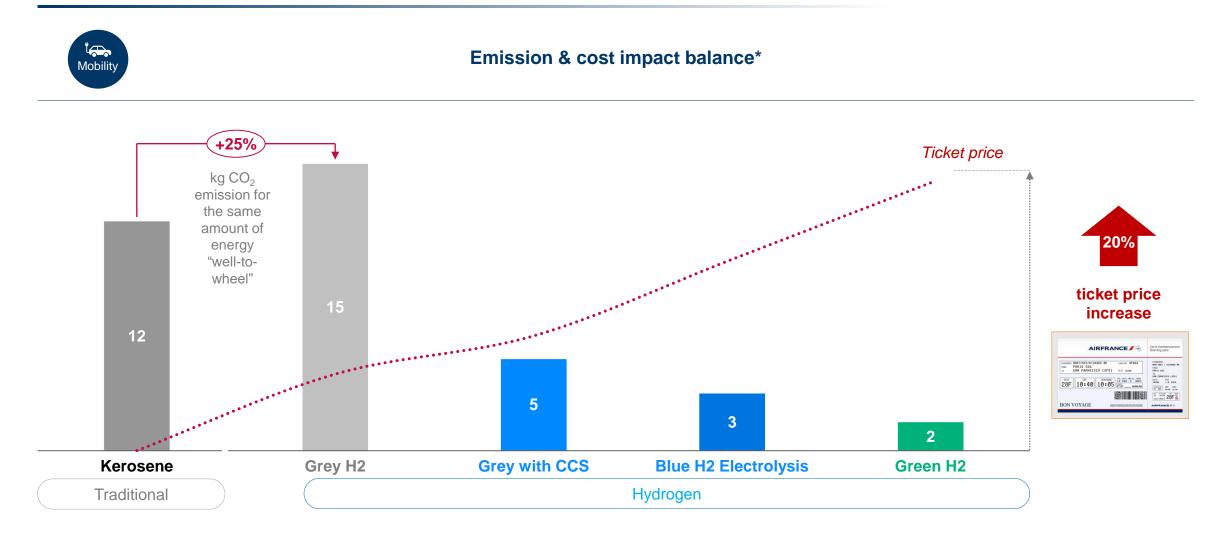
- Operational optimization efforts and public incentives (e. g. tax benefits) will not fully compensate cost increase on the mediumterm (at least 2030)
- Solution provider need to balance ecological and economical KPIs in defining their commercial offers (esp. in mobility)
- Trade-off needs to be transparently articulated to get end user commitment and secure Rol

3 different hydrogen production paths compete for the best trade-off between economical and ecological KPIs

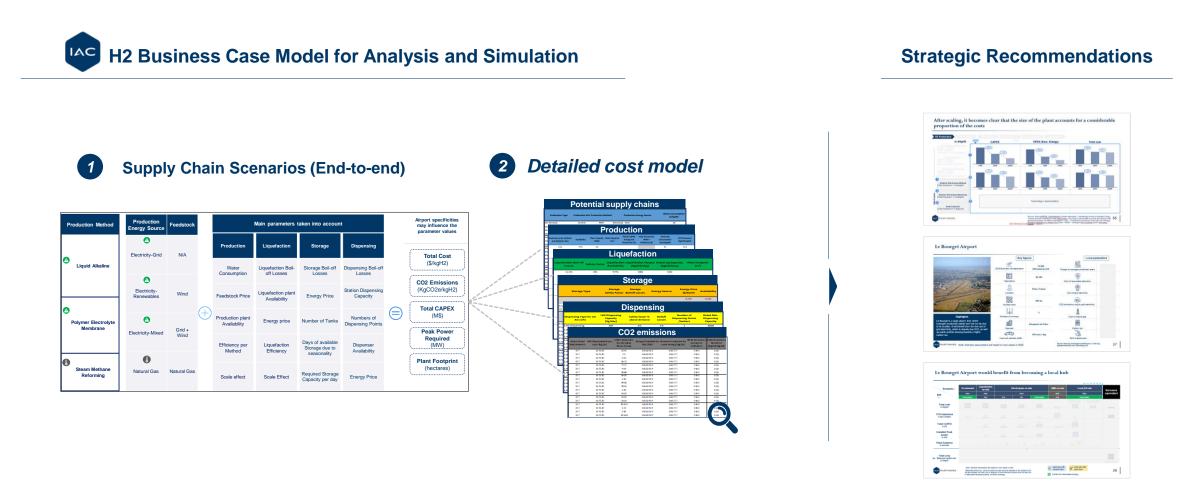
Different "shades of green"


CO₂ emissions from hydrogen production depends on technology and energy mix

	Grey H2	Blue H2	Green H2	
Characteristics	Produced from fossil fuels via carbon intensive processes (96% of all hydrogen today)	Grey hydrogen whose CO2 emitted during production, sequestered via carbon capture and storage	Low or zero-emission hydrogen produced using clean, renewable energy sources	
Types	 Gasification – coal / lignite Steam methane reforming 	Grey with CCS*Grid electrolysis	 Electrolysis from low- carbon renewables source 	
CO2- Footprint				
Cost				

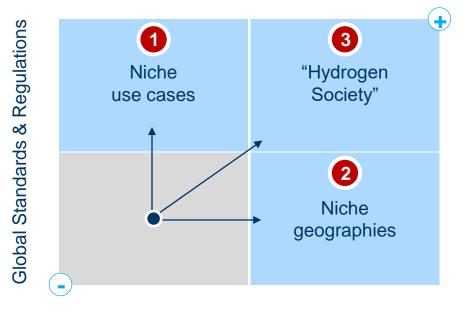


In addition, significant infrastructure upgrades will be necessary to scale-up – both for Hydrogen production and distribution


Client Example

Finding the right balance between emissions and cost will be key for the future – for some use cases end user acceptance will require dedicated marketing strategy approach

We support clients in modeling H2 scenarios and business cases to simulate cost, revenue and investments for an objective RoI* decision basis moving forward


Ability to globally scale use cases driven by international standards will decide the path going forward – we see 3 potential target scenarios for players to consider

2

3

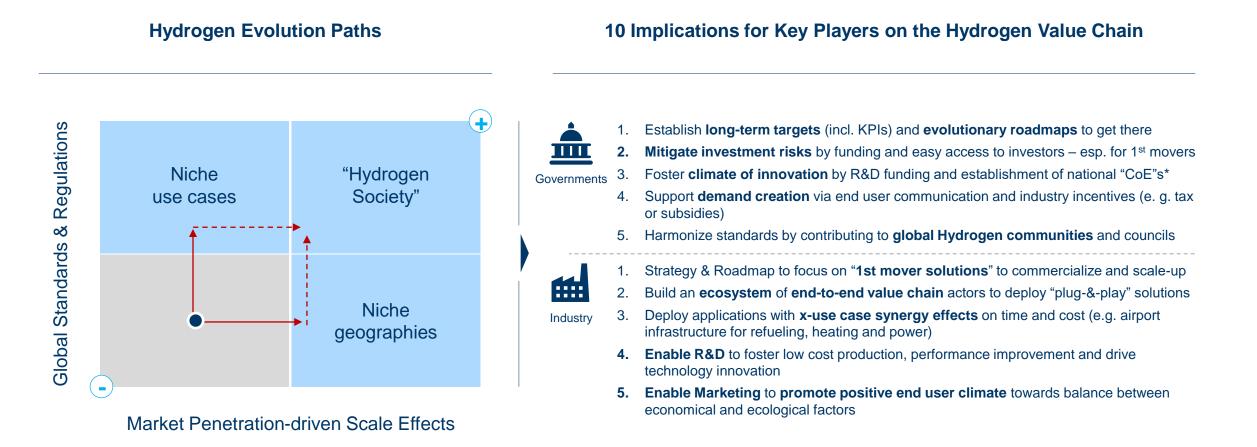
Hydrogen Target Scenarios

Impact on Low-carbon emission & end user acceptance

Market Penetration-driven Scale Effects

Hydrogen is used as **complementary solution** to low-carbonize **dedicated use cases** or is used as main solution for **separate niche use cases** (e. g. forklifts). **Mass usage** is **limited** due to availability (production capacity and distribution network) and cost constraints

Fragmented policies and local standards drive **regulatory uncertainty** and limit development of a global export network. **Local niche markets** and **applications** develop driven by end user acceptance / demand and technology innovation but remain **limited regarding** its **global scalability**.


Global long-term strategies, standardized policies and incentives (e.g. tax benefits) offer a **positive investment climate** – boosting hydrogen to become the **clean energy carrier of choice across** major **use cases and applications**. Synergies and scale effects accelerate transition from blue to green hydrogen globally

Ô

Strategic Roadmap (Paths)

We expect an evolutionary path towards full-scale hydrogen solutions – a "joint force"– approach between Governments and Industry will be mission critically to not stop halfway

Strategic Roadmap (Deep Dive)

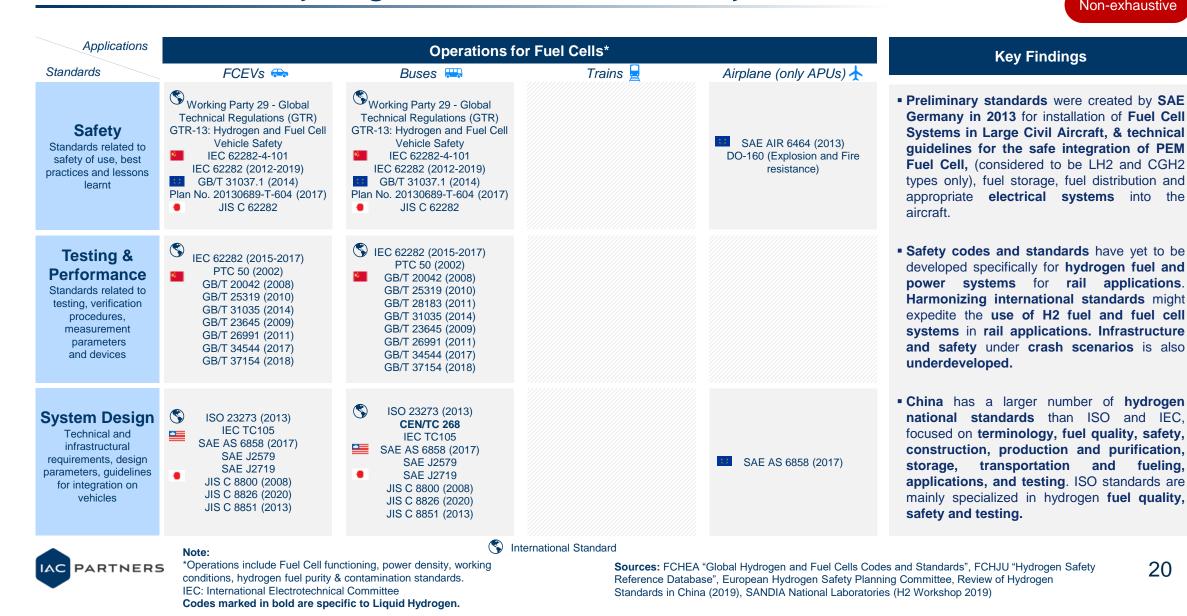
Local governments are investing heavily in a "hydrogenized" world - formulating dedicated hydrogen strategies to address regulatory barriers and stabilize investment climate

					*)	
Time	July 2020	June 2020	Sept 2019	June 2018	June 2019	June 2020
Budget	\$64 million	€1.5 billion	£12 billion	\$22 billion	\$17 billion	€9 billion
Objectives	Support for industry and academia to scale-up America's hydrogen economy (US Department of Energy)	Develop a carbon- neutral aircraft by 2035 (Prototype -2028)	Deployment of a 4GW floating wind farm for hydrogen production in the early 2030s.	Industry ecosystem	Develop fuel cell industry and H2 mobility supply chain by 2023.	Ramp up Hydrogen production capacity to 5 GW by 2030 and 10 GW by 2040
Main Projects & Initiatives	3M to develop advanced manufacturing equipment for "gigawatt-scale" proton exchange membrane electrolysis technology	France's ambitions for a zero-carbon plane include a reworking of the popular Airbus A320 product line by 2030 and the move to hydrogen fuel by 2035.	ITM Power uses power from Ørsted's Hornsea One offshore wind farm to generate U.K.'s first green hydrogen using 100 MW of electrolyzers.	South Korea's priorities are leadership in fuel cell cars and large-scale stationary fuel cells for power generation.	China's industrial hub Hebei approved 43 H ² projects for production, equipment manufacturing, filling stations and fuel cells	German steel giant Thyssenkrupp and the country's largest utility, RWE to forge a long- term green hydrogen alliance

First councils start to build to join forces between industry, governmental organizations and investors – we recommend to strategically build a global H2 Ecosystem

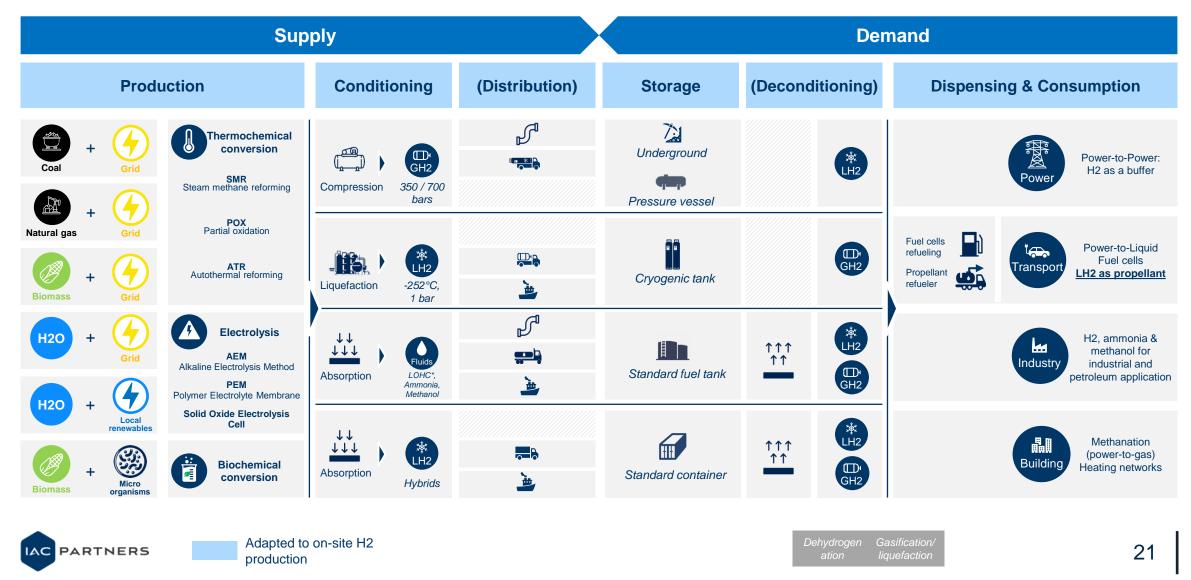
Architecture of a global Hydrogen Ecosystem

Examples for ongoing initiatives


Strategic Roadmap (Deep Dive)

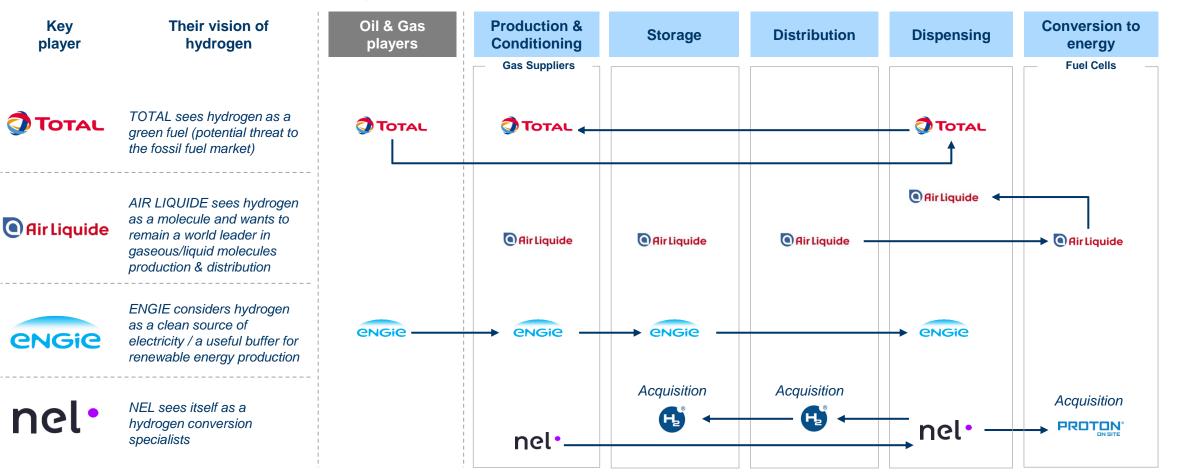
First global standards emerge and start to converge – with solid maturity for Buses and Cars and a "way-to-go" for Aviation and railway

Non-exhaustive


20

Key Findings

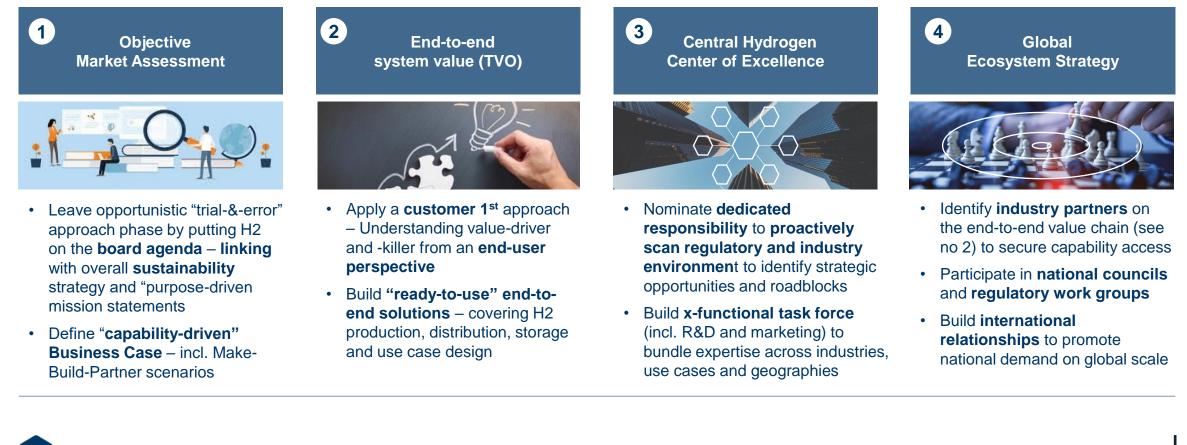
Value Chain


The race is on – we already see significant movement on the value chain, but no demand / supply convergence across use-cases expected on the short-term

*Liquid Organic Hydrogen carrier

Value Chain (Deep Dive)

Positive momentum and market outlook mobilizes established and new players along the whole value chain to secure quick-mover-advantage


Strategic Moves on the H2 Value Chain (selected key players)

AC PARTNERS

PARTNERS

Analysis shows, quick-moving companies start mobilizing to secure pole position – we condensed 4 patterns for success to consider to not fall behind

Patterns for Success

How we can help: IAC supports companies shaping their strategic footprint in Hydrogen – accelerating the race towards competitive edge

Strategic Market Studies

Room,- Right- and Way-to-Win – Business Potential I Market Segments I Key Success Factors & enabling Capabilities I Capability Heatmap I Strategic Roadmap I Business Case

Business Model Design

Product Portfolio & Roadmap I Target Use Cases & Customer Segments I Value Chain Design I Operating Model

Go-to-Market Strategy

Ecosystem Strategy & Design I Commercial Offer I Marketing & Communication

Let's get in touch! – Our hydrogen experts are happy to share industry insights and good-practices with you

FRANCE

Olivier Saint-Esprit Partner olivier.saint-esprit@iacpartners.com +33 6 28720767

USA

Nicolas Huygevelde Nicolas.huygevelde@iacpartners.com +1 (845) 637 5437

GERMANY

Maurice Resan Maurice.resan@iacpartners.com +49 (0) 151 62968710

SINGAPORE

Umang Goyal umang.goyal@iacpartners.com +65 9380 2457

Commitment, Responsibility, Team Spirit and Innovation

These are the values shared by all IAC's employees - Values at the heart of our vision of a consulting firm deeply committed to the competitiveness of its clients.

Our history started more than 30 years ago; we reaffirm the values that connect our employees by emphasizing commitment and responsibility. We believe in both the strength of the collective and the potential of each, that we engage individually and collectively for our clients and the firm.

We are a responsible company because each one of us acts as a responsible individual, being personally a custodian of our common culture.

Contacts

Industries

Aerospace & Defense	Automotive & Mobility	Industrial & Electrical Equipt	Transportation	Benoît Petît	
Olivier Saint-Esprit olivier.saint-esprit@iacpartners.com +33 6 28 72 07 67	Olivier Saint-Esprit olivier.saint-esprit@iacpartners.com +33 6 28 72 07 67	Nicolas Huygevelde nicolas.huygevelde@iacpartners.com +1 845 637 5437	Serhiy Palamar serhiy.palamar@iacpartners.com +49 160 553 5617	Global Managing Partner benoit.petit@iacpartners.com +33 6 10 28 07 10	
Energy, Construction & Process Industry	Retail & Consumer	Private Equity	Healthcare & Lifesciences	Nicolas Huygevelde Managing Partner – North America nicolas.huygevelde@iacpartners.com +1 845 637 5437	
Loris Mazza loris.mazza@iacpartners.com +33 6 12 29 90 83	Maurice Resan maurice.resan@iacpartners.com +49 151 6296 8710	Frédéric Bourgeois frederic.bourgeois@iacpartners.com +33 7 68 35 70 04	Jean-Baptiste Guillaume jean-baptiste.guillaume@iacpartners.com +33 6 21 62 55 99	Maurice Resan Managing Partner - Germany maurice.resan@iacpartners.com +49 151 6296 8710	
Practices Product Excellence & Develop ^t	Procurement & Supply Chain	Digital Transformation & Enabling Technology	Organization & Change	Umang Goyal Managing Partner - Singapore umang.goyal@iacpartners.com +65 9380 2457	
Jean-Baptiste Guillaume jean-baptiste.guillaume@iacpartners.com +33 6 21 62 55 99	Serhiy Palamar serhiy.palamar@iacpartners.com +49 160 553 5617	Maurice Resan maurice.resan@iacpartners.com +49 151 6296 8710	Nicolas Grangier nicolas.grangier@iacpartners.com +33 6 09 94 28 94	Nicolas Grangier Sales Director nicolas.grangier@iacpartners.com +33 6 09 94 28 94	
	Amédée Bonnet Johann	eldorf Chicago straße 1 213 North Morgan St MANY USA	Singapore reet 1 George Street SINGAPORE	y 💽 🛅	

ΙΔΟ